首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   156篇
  国内免费   451篇
化学   986篇
晶体学   15篇
力学   1068篇
综合类   83篇
数学   227篇
物理学   716篇
  2024年   7篇
  2023年   30篇
  2022年   67篇
  2021年   58篇
  2020年   71篇
  2019年   57篇
  2018年   53篇
  2017年   88篇
  2016年   107篇
  2015年   90篇
  2014年   91篇
  2013年   191篇
  2012年   119篇
  2011年   181篇
  2010年   129篇
  2009年   151篇
  2008年   161篇
  2007年   145篇
  2006年   172篇
  2005年   158篇
  2004年   138篇
  2003年   105篇
  2002年   111篇
  2001年   77篇
  2000年   67篇
  1999年   59篇
  1998年   66篇
  1997年   62篇
  1996年   50篇
  1995年   42篇
  1994年   37篇
  1993年   27篇
  1992年   37篇
  1991年   21篇
  1990年   18篇
  1989年   11篇
  1988年   7篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有3095条查询结果,搜索用时 15 毫秒
11.
A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L−1 to 0.037 μg L−1. The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L−1 and 20 μg L−1 ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates.  相似文献   
12.
The corrosion inhibition impact of two quinoline derivatives, viz tetrazolo [1,5‐a] quinoline‐4‐carbaldehyde ( TQC ) and (Z) ?5‐methyl‐N‐(tetrazolo [1,5‐a] quinolin‐4‐ylmethylene) thiazol‐2‐amine ( MTQT ), has been examined against mild steel in 1 M HCl solution using conventional weight loss, potentiodynamic polarization, linear polarization, electrochemical impedance spectroscopy, quantum chemical, and scanning electron microscopic studies. The experimental results have showed that TQC and MTQT revealed a good corrosion inhibition and that the inhibition efficiency increases with the increase of concentration of inhibitor to attain 94.54% for TQC and 99.25% for MTQT at 25 ppm. Polarization measurements suggest that TQC and MTQT act as a mixed‐type inhibitor. A synergism between inhibitors can be observed by polarization measurements. Electrochemical impedance spectroscopy measurements show an increase of the transfer resistance with the inhibitor concentration. Adsorption of TQC and MTQT on the mild steel surfaces in 1 N HCl solution follows the Langmuir adsorption isotherm model. Furthermore, quantum chemical calculations have been conducted using B3LYP functional and 6‐31G(d,p) basis set to complement the experimental evidences. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
13.
The grafting of trialkoxysilane molecules should also give rise to the formation of a siloxane network at the substrate's surface when trialkoxysilanes are used. Other candidates that might be able to act as adhesion promoters at metallic surfaces are dimethylalkoxysilanes. The advantage of dimethylalkoxysilanes is that only one silanol group is produced during the hydrolysis step, leading to the formation of a grafted monolayer onto the steel. Moreover, the chemical grafting of stainless steel, which exhibits a low surface reactivity, is of great interest for industrial applications such as adhesive bonding or coatings. The objective of this work was to chemically graft dimethylalkoxysilanes onto AISI 316L stainless steel and to analyze the grafted layer by X‐ray photoelectron spectroscopy (XPS). Investigation of the hydrolysis of these molecules in aqueous solutions was also performed by proton nuclear magnetic resonance spectroscopy (1H NMR). The grafting of 3‐(ethoxydimethylsilyl)propylamine (APDES) and 3‐glycidoxypropyldimethylethoxysilane (GPDES) was achieved onto stainless steel after a controlled hydrolysis reaction. A pH inferior or equal to 5 was necessary to obtain a sufficient hydrolysis of silanes. XPS results have evidenced the grafting of the silanes onto stainless steel. The signal of the Si 2p peak clearly showed the formation of a covalent bond between APDES and the stainless steel surface through the O atoms giving rise to a uniform layer of adsorbed molecules. Moreover, this grafted layer is strongly stable as no removal of the alkoxysilane was observed after immersion in hot water which is very critical for these molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
14.
Nanostructured metals have different mechanical, chemical, and physical behaviors in comparison with the microstructured ones. Numerous research studies demonstrated that the biological behavior of nanostructured metallic implants was improved significantly. Concerning the nanostructured metals, decreasing the corrosion rate and the releasing of hazardous ions from metallic implants, and thus increasing the biocompatibility of implants are due to improving the native oxide layer. In the present study, nanostructured 316L stainless steel (biomedical grade) was manufactured via equal channel angular pressing (ECAP) method. To do so, the 316L stainless steel (SS) was exposed to the ECAP operation for eight passes. The impact of the ECAP process on corrosion behavior of SS samples was evaluated through performing the electrochemical polarization corrosion tests in Ringer's solution. Scanning electron microscopy was employed to study the surface morphology of common SS and ECAPed SS sample after the electrochemical polarization tests. Moreover, the biological behavior of the samples was evaluated via cell culture using fibroblast cells. The corrosion test results revealed a substantial decrease of corrosion rate from 3.12 (coarse‐grained sample) to 0.42 μA cm?2 (for nanostructured). Furthermore, the cell proliferation in the interface of nanostructured sample and cell culture medium enhanced dramatically compared with the coarse‐grained one. The much better biological behavior of nanostructured SS sample in comparison with the coarse‐grained one is mostly due to the significant decrease of corrosion rate on the surface of SS samples, and the presence of much more chrome oxide on the surface of SS sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
15.
In austenitic stainless steel nitrogen stabilizes the austenitic phase, improves the mechanical properties and increases the corrosion resistance. Nitrogen alloying enables to produce austenitic steels without the element nickel which is high priced and classified as allergy inducing. A novel production route is nitrogen alloying of CrMn‐prealloyed steel powder via the gas phase. This is beneficial as the nitrogen content can be adjusted above the amount that is reached during conventional casting. A problem which has to be overcome is the oxide layer present on the powder surface which impedes both the sintering process and the uptake of nitrogen. This study focuses on whether heat treatment under pure nitrogen is an appropriate procedure to enable sintering and nitrogen uptake by reduction of surface oxides. X‐ray photoelectron spectroscopy (XPS) in combination with scanning electron microscopy (SEM) and energy dispersive X‐ray spectrometry (EDS) are used to investigate the surface of powdered FeMn19Cr17C0.4N heat treated under nitrogen atmosphere. The analyses showed reduction of iron oxides already at 500 °C leading to oxide‐free metallic surface zones. Mn and Cr oxides are reduced at higher temperatures. Distinct nitrogen uptake was registered, and successful subsequent sintering was reached. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
16.
设计合成了4种对称的以不同供/吸电子基团为共轭桥、两端连接meso位苯或噻吩取代的新型氟化硼二吡咯甲川(BODIPY)衍生物;通过1H NMR,13C NMR和MS等手段对其进行了结构表征;并采用紫外吸收光谱、荧光发射光谱及循环伏安(CV)等方法研究了其光电性能.紫外光谱数据表明,BODIPY结构具有明显的特征吸收,中间的桥联基团无论是强供电子的苯并二噻吩(BDT)还是强吸电子的苯并噻二唑(BT)均不能使整个分子产生明显的分子内电子迁移(ICT).另一方面,meso位的取代基可与BODIPY核产生微弱的ICT,且meso位噻吩取代的分子比meso位苯环取代的分子表现出更强的ICT.紫外光谱数据和电化学测试结果表明,meso位噻吩取代的分子比meso位苯环取代的分子具有更低的氧化电位和更窄的能隙.  相似文献   
17.
The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless‐steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless‐steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm2 regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless‐steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless‐steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless‐steel columns were more resistant to etching than 304 stainless‐steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless‐steel columns used with this supercritical fluid chromatography technique.  相似文献   
18.
A series of FR-RPUF composites were prepared by a one-step water foaming process with ammonium polyphosphate (APP) and steel slag (SS) as flame retardants. Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical combustion test, microscale combustion calorimetry (MCC), TG-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy (SEM), Raman spectra and FTIR were used to investigate the thermal stability, flame retardancy, combustion performance, gas phase products, and char residue morphology of FR-RPUF composites. TG test results showed that the initial decomposition temperature (T-5wt%) and char residue rate at 700°C of RPUF/APP/SS composites were significantly enhanced by the addition of APP and SS, and the thermal stability of the composites was improved. Flame retardant test results confirmed the significantly increased LOI values of RPUF/APP/SS composites with V-0 rating. TG-FTIR also confirmed the obviously decreased release of toxic gases and flammable gases in the combustion of RPUF/APP/SS composites. SEM and Raman spectra of char residues for the composites suggested that APP/SS system improved the compactness and graphitization degree of char layer for RPUF/APP/SS composite. The above researches provide a new strategy for the utilization of SS in fire safety engineering.  相似文献   
19.
Natural-based corrosion inhibitors have gained great research interest thanks to their low cost and higher performance. In this work, the chemical composition of the methanolic extract of Ammi visnaga umbels (AVU) was evaluated by gas chromatography (GC) coupled with mass spectrometry (MS) and applied for corrosion inhibition of carbon steel (CS) in 1.0 mol/L HCl using chemical and electrochemical techniques along with scanning electron microscope (SEM) and theoretical calculations. A total of 46 compounds were identified, representing 89.89% of the overall chemical composition of AVU extract, including Edulisin III (72.88%), Binapacryl (4.32%), Khellin (1.97%), and Visnagin (1.65%). Chemical (Weight loss) and electrochemical (potentiodynamic polarization curves (PPC), and electrochemical impedance spectroscopy (EIS)) techniques revealed that investigated extract can be used as an effective corrosion inhibitor for carbon steel in 1.0 mol/L HCl solution. At a low dose of 700 ppm, the inhibitory action of AVU extract reached an inhibition efficiency of 84 percent. According to polarization tests, the investigated extract worked as a mixed inhibitor, protecting cathodic and anodic corrosion reactions. The EIS test showed that upon the addition of AVU extract to HCl solution, the polarization resistance increased while the double layer decreased. SEM images showed a protected CS surface in the inhibited solution. Quantum chemical calculations by Density Functional Theory (DFT) for the main components confirmed the major role of heteroatoms and aromatic rings as adsorption sites. Molecular dynamics (MD) simulation was used to study the adsorption configuration of the main components on the Fe(1 1 0) surface. Outcomes from this study further confirmed the significant advantage of using plant-based corrosion inhibitors for protecting metals and alloys.  相似文献   
20.
In this research, we investigated the synthesis of a novel water-soluble bis azo pyrazolin-5-one (ABP) which was synthesized efficiently via the regioselective reaction of hydrazine with coumarin hydrazone (CMH). Also, we evaluate their anti-corrosion and anti-bacterial behavior. The inhibition efficiency of ABP in an acidic medium (1.0 M HCl) was evaluated using various electrochemical and surface morphology measurements. The novel bis pyrazole-based azo dye ABP (16 × 10?6 M) demonstrated a higher protection capacity (93.3 %). Tafel curves revealed that ABP was a mixed-type inhibitor. The adsorption of ABP on the C-steel (CS) surface is proven by the alteration in (Rct and Cdl) impedance characteristics and obeyed the Langmuir isotherm model. SEM/EDX, AFM, and XPS surface examinations confirmed the enhancement of an adsorbed film protects the CS surface from acid corrosion at the appropriate dose. Furthermore, theoretical calculations using DFT and MC simulations were performed to identify the active sites on ABP molecules in charge of the adsorption and surface protection of the CS. The adsorption of bis pyrazole-based azo dye on the metal surface explained the protection mechanism. Moreover, the ABP screened for its antimicrobial activity against sulfate-reducing bacteria (SRB), and the calculated inhibition efficiency was 100 %. The current work presents significant results in manufacturing and producing novel water-soluble bis pyrazole-based azo dye derivative with high anti-corrosion and anti-microbial efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号